First-principles Calculations of Twin-boundary and Stacking-fault Energies in Magnesium
نویسندگان
چکیده
The interfacial energies of twin boundaries and stacking faults in metal magnesium have been calculated using first-principles supercell approach. Four types of twin boundaries and two types of stacking faults are investigated, namely, those due to the (1011) mirror reflection, the (1011) mirror glide, the (1012) mirror reflection, the (1012) mirror glide, the I1 stacking fault, and I2 stacking fault. The effects of supercell size on the calculated interfacial energies are examined. The calculated interfacial energies are 85.5, 81.0, 118.1, 120.0, 8.1, and 21.8 mJ/m, respectively, for the six types of atomic configurations.
منابع مشابه
Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation
Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-pri...
متن کاملZn-dopant dependent defect evolution in GaN nanowires.
Zn doped GaN nanowires with different doping levels (0, <1 at%, and 3-5 at%) have been synthesized through a chemical vapor deposition (CVD) process. The effect of Zn doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanow...
متن کاملPrediction of thermal cross-slip stress in magnesium alloys from direct first-principles data
We develop a first-principles model of thermally activated cross-slip in magnesium in the presence of a random solute distribution. Electronic structure methods provide data for the interaction of solutes with prismatic dislocation cores and basal dislocation cores. Direct calculations of interaction energies are possible for solutes – K, Na and Sc – that lower the Mg prismatic stacking fault e...
متن کاملGeneralized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation
In an effort to establish a scientific foundation for the computational development of advanced Mg-based alloys, a systematic study of the generalized stacking fault (GSF) energy curves has been undertaken. Additionally, the associated stable and unstable stacking and twinning fault energies, ideal shear strengths, and comparative twinnability have been investigated in terms of first-principles...
متن کاملAre some nanotwinned fcc metals optimal for strength, ductility and grain stability?
Here we investigate whether certain face-centered cubic metals display a superior behavior of nanotwinned structures compared to others. We also address the question of an optimal lamella thickness that yields maximum strength and stability. Our analysis of the intrinsic stacking fault energies, csf , and the unstable stacking fault energies, cus, of Al, Pd, Cu and Ag, as well as our atomistic ...
متن کامل